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Abstract

Natural convection in a narrow horizontal cylindrical annulus is numerically investigated for fluids of Pr < 0.3. For
Pr € 0.2, hydrodynamic instability induces steady or oscillatory flows consisting of multiple like-rotating cells. For
Pr = 0.3, thermal instability creates a counter-rotating cell on the top of annulus. For a fluid of Pr & 0, the multiple
cells are distributed uniformly in the lower and upper parts of annulus. As Pr is increased, the cells are shifted upwards.
The like-rotating cells drift downward, as time goes on, and the speed of travel increases with increase of Pr. For
Pr = 0.3, the oscillatory flows after secondary instability consist of multiple like-rotating cells in the vertical section of
annulus and one or more counter-rotating cells on the top part, and multiple oscillatory flows are found. © 1998 Elsevier
Science Ltd. All rights reserved.
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Nomenclature

D; diameter of inner cylinder
é., &, unit vectors in the radial and angular directions,
respectively

Gr Grashof number based on the gap width,
ag(T,— T)L'}¥’

Gr. critical Grashof number at which instability of con-
duction regime occurs

g acceleration of gravity

J Jacobian

L gap width of the annulus, R, — R,

N(r) number of points ¢ at which u(r., ¢ —, ) > 0 and
ulr, d+.0 <0

Nueng  Nusselt number of pure conduction state

Nu,, Nu, local Nusselt numbers at the inner and outer
cylinders, respectively

Nu,. Nu‘; mean Nusselt numbers at the inner and outer
cylinders, respectively

Nuy,. time-averaged overall Nusselt number
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P period of oscillation

p dimensionless pressure

Pr Prandtl number, v/y

Ra Rayleigh number, Pr Gr

Ri, R, radii of the inner and outer cylinders, respectively
r dimensionless radial coordinate

r,, ¥, dimensionless radii of the inner and outer cylin-
ders, respectively

r. radial coordinate of the center of annular gap,
(ri+r,)/2

¢ dimensionless time

T. T, temperatures at the inner and outer cylinders,
respectively

u dimensionless velocity vector

u, v dimensionless velocity components in the radial
and angular directions, respectively

u(t) instantaneous radial velocity at (r., 7/2), u(r.,
/2, 1).

Greek symbols

a2 coefficient of thermal expansion

n stretched coordinate in the radial direction
# dimensionless temperature

y  thermal diffusivity
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v kinematic viscosity

po mean density

¢ angular coordinate

¥ dimensionless streamfunction
w dimensionless vorticity.

1. Introduction

Natural convection in a horizontal concentric cyl-
indrical annulus kept at constant surface temperatures
has received much attention because of the theoretical
interest and its wide engineering applications such as
thermal energy storage systems, cooling of electronic
components and transmission cables. Comprehensive
reviews were presented by Gebhart et al. [1].

The flow features of a fluid with high Prandtl number
(of order 1 or larger) have been disclosed experimentally
and numerically. Kuehn and Goldstein [2] performed
experimental and numerical studies to determine velocity
and temperature distributions and local heat transfer
coefficients for convective flows of air (Pr ~ 0.7) and
water (Pr =~ 6). Powe et al. [3, 4] and Rao et al. [5] inves-
tigated flow patterns for air. They found that the free
convective flow of air can be categorized into four basic
types: a steady two-dimensional flow with two crescent-
shaped eddies, a two-dimensional oscillatory flow, a
three-dimensional spiral flow, and a two-dimensional
multicellular flow. Recently, Yoo [6] investigated the
existence of dual steady states for a fluid of Pr = 0.7.

Thermal convection of fluids with low Prandtl number
such as liquid metals exhibits more complicated flow
patterns for high Rayleigh numbers [7-11]. Mack and
Bishop [7] and Custer and Shaughnessy [8] investigated
steady two-dimensional convection of a low Prandtl
number fluid (Pr=0.02) in a wide annulus with
D,/L = 2. They used a regular perturbation expansion in
powers of Ra (or Gr and Pr) to obtain solutions for the
streamfunction and temperature fields and found a steady
multicellular flow composed of two weak eddies located
in the top and bottom regions of annulus and a larger
dominant eddy which rotates in the opposite sense. On
the other hand, Charrier-Mojtabi et al. [9] considered
unsteady two-dimensional equations. For D,/L = 2 and
Pr = 0.02, they observed oscillatory flows with two and
three like-rotating cells in the half of an annulus. In
particular, Fant et al. [10] studied unsteady natural con-
vection for the limiting case of Pr = 0. They simplified
the Boussinesq approximated Navier-Stokes equations

to Cartesian-like boundary layer equations by means of

a high Rayleigh number small-gap asymptotic expansion.
They found that a steady multicellular instability sets
in first, and then time-periodic and complex unsteady
multicellular flows develop as the scaled gap spacing
increases. Yoo et al. [11]investigated the unsteady natural
convection of a fluid with Pr = 0.02. They observed

steady and oscillatory multicellular flow patterns, and
plotted the transition Grashof number at which the types
of flow patterns were altered as functions of inverse rela-
tive gap width.

Some other authors considered a non-uniformly
heated annular fluid layer [12], transient convection [13,
14], the condition of a constant heat flux at the inner
cylinder [15], a conjugate problem [16], cold water [17],
and an annulus with a rotating cylinder [18].

Up to date, most works for the natural convection
in horizontal annuli have been performed for wide-gap
annuli. Relatively few studies, however, have been made
for narrow annuli. In particular, a systematic inves-
tigation on the effect of Prandtl number has not been
made.

On the other hand, the natural convection problems in
a vertical slot [19-22] and in a tall vertical annulus [23,
24] have been studied extensively. Korpela et al. [19] and
Korpela [20] studied the stability of natural convection
base flow in narrow, vertical, and inclined slots. They
found that the value of Pr has the dominant influence
upon the type of instability of the conduction-dominated
flow. For the inclined slot geometry, only a hy-
drodynamic type of instability can occur for Pr <
0.24 [20]. Lee and Korpela [21] numerically studied the
multicellular natural convection in a vertical slot, and
supported the earlier results for the vertical slot [19].

A narrow horizontal annulus with a heated inner cyl-
inder is an interesting physical system, since hyd-
rodynamic instability can occur in the vertical section
[21] and Rayleigh—-Bénard thermal instability [25] can
occur on the top part of thermally unstable region. We
can imagine that very interesting natural convection
phenomena must occur, and, of course, the Prandtl num-
ber is thought to play an important role.

In a horizontal annulus with a heated inner cylinder,
there is no state in which the fluid is motionless. The
conduction regime of natural convection for low values
of Gr forms a crescent-shaped eddy in which fluid rises
near the inner hotter cylinder and sinks near the outer
colder one (Fig. 1). Walton [26] studied the stability of
conduction regime of natural convection in a horizontal
annulus by using a WKB formulation. He found that
Pr = 0.24 was also a critical value of Prandtl number for
the annular geometry. For Pr > (.24, instability sets in
at the top of cylinders (¢ = 0). For Pr < 0.24, the insta-
bility can first form elsewhere. The value of Pr is seen to
play a fundamental role in characterizing the instability
of conduction regime in narrow horizontal annulus.

The objective of the present study is to investigate
the Prandtl number dependent natural convection in a
narrow horizontal annulus. The unsteady Boussinesq
approximated Navier-Stokes equations are numerically
solved for an annulus with D,/ = 12. Itis found that the
stability of the conduction regime of natural convection
in a narrow horizontal annulus can be divided into the
following two regimes:
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Fig. 1. A sketch of an annulus and a plot of streamlines and isotherms of conduction-dominated regime.

(1) For Pr < 0.2, the instability sets in as steady or
oscillatory flows consisting of multiple like-rotating cells
in the vertical section of annulus. The instability is hy-
drodynamic in its origin. The critical Grashof number is
increased as Pr is decreased. and tends to a finite limit as
Pr—0.

(2) For Pr = 0.3, the instability first sets in at the top
portion of annulus, indicating that the instability is ther-
mal in its origin. For Pr = 0.3, a square-shaped counter-
rotating cell is formed on the top of annulus.

After the onset of instability of conduction regime,
very complex oscillatory multicellular convection is
developed, which is dependent on Pr. In this report the
results for Pr < 0.2 and Pr = 0.3 are presented. And the
results for Pr > 0.4 will be presented in the subsequent
paper. The main features for Pr < 0.2 and Pr = 0.3 are
as follows :

(1) Pr<0.2: For Pr=0, the like-rotating cells are
distributed uniformly in the upper and the lower parts of
annulus. As Pr is increased, however, the cells are shifted
upwards. The multicellular flow pattern is observed to
drift downward, and the speed of travel increases as Pr
is increased.

(2) Pr=0.3: As Gris increased, the steady secondary
flow with a counter-rotating cell on the top undergoes
hydrodynamic instability. For Pr = 0.3, hydrodynamic
and thermal instabilities are coexistent, and the oscil-
latory flows after secondary instability consist of multiple
like-rotating cells in the vertical section of annulus and
one or more counter-rotating cells on the top part. The
shape and strength of the cells on the top are nearly
unvarying, although the like-rotating cells in the vertical
section undergo strong oscillatory motions. Multiple
oscillatory flows characterized by the number of the cells
on the top are found.

2. Analysis

The configuration to be studied and the coordinate
system are seen in Fig. 1. The fluid is contained between
two infinite horizontal concentric circular cylinders,
which are held at different uniform temperatures of 7;
and T, (T; > T,). The thermophysical properties of fluid
except density are assumed constant. And the Boussinesq
approximation is employed such that the variation of
density with temperature can be neglected except for the
buoyancy force terms. The viscous dissipation in the
energy equation is also neglected. We consider a two-
dimensional problem, and use the cylindrical coordinates
(r. ¢). the angular coordinate ¢ being measured counter-
clockwise from the upward vertical through the center of
the cylinders (Fig. 1). The equations governing con-
servation of mass, momentum, and energy are put into
non-dimensional form by taking the characteristic length,
time, velocity, pressure, and temperature as L, L%}y,
V= ag(T,— T, )Ly, poV?, and (T;— T,), respectively. We
let Pr = v/ and Gr = ag(T,— T,)L’jv* denote the Prandtl
and Grashof numbers, respectively. The dimensionless
governing equations are

V=0 (n

cu

5 +Gr(i V)it = — GrVp+ Vi -+ t[cos (¢)2,— sin (4)é,]

(2)
oo . | -
& +Gr(n- V)8 = EV % 3
with the boundary conditions
u=v=0 0=1 atr=r, 4)
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u=v=0 6=0 atr=r, 5

On the introduction of the streamfunction ¥, con-
tinuity equation (1) is satisfied identically. And the
dimensionless equations governing the two-dimensional
convection in terms of the vorticity w and streamfunction
Y are written as follows:

fw 5 . 00 00 .
*(,;; = GVJ(W.(U)+V w—[sm (d))‘(‘;; +COSs (qb);b‘qg} (6)
w=—-V¥ (N
co I,

S = GrI(Y.0)+ 5 V0 ®)

where the vorticity w, streamfunction ‘P, Jacobian J(f,
¢), and Laplacian V? are

g v I g

W), u=-—=—, = —-

(
réo

('\
o =—/{rv)—
r[’r( )

. lofeg  ofég
Jfg) = r<0r ¢ B a¢ or
AT
Vi) S ©
ror\" Or rrog?

The boundary conditions on the two walls are

] 2y

w2220 w=—“m =1 atr=r  (10)
cr (';,2
o >y

Y=—-—=0, w=— 0=0 atr=r, an
Cr (-,‘I‘Z

We impose the following symmetric conditions

¥ ¥ _ a0 0 at¢p =0 (12)
=== = a =0r
op: ¢

since we suppose the flow to be symmetric with respect
to the vertical plane through the center of cylinders.

The dimensionless heat transfer rate of pure con-
duction in the absence of fluid motion is
i = 13)
NUeong = ln(rl,/r,) ( -
The local Nusselt number is defined as the actual heat
flux divided by Nucong-

;0
Nit() = —(r L)m atr=r, (14)

oy,
Nu(@) = —{r==}/Nuens atr=r, (15)

And the mean Nusselt numbers, Nu, and Nu,, are given
by

Wi = T‘[ J " Nu(d) do (16)
0

N, = J " Nu()dé (17
0

Equations (6)-(12) are numerically solved by using
finite difference method. Equations (6) and (8) are cast
into finite difference form using the leap-frog method [27]
of Dufort-Frankel for the diffusion and time derivative
terms, and central differencing for the Jacobian. The Pois-
son equation for the streamfunction is descretized by use
of five-point formula. Because the computational domain
is rectangular, the discretized Poisson equation is solved
by the direct method of Buzbee et al. [28] which uses cyclic
even-odd reduction method. The algorithm of Buzbee et
al. [28] is known to be extremely fast and accurate. In the
azimuthal direction, a uniform grid is employed, and in
the radial direction, the following coordinate stretching
is utilized.

tanh {C(2n—1)}
tanh (C)

withC =15 0<n<l1 (I8)

This study uses the (rx ¢) meshes of (15x257) or
(25x129). In the transitional regime of conduction-
dominated flow, especially many grid points are used
in the ¢-direction to capture the weak initial instability
occurring near the critical Grashof number. The time
step At was taken in the range of 107° < A7 < 107", The
accuracy of the numerical method was checked by Yoo
[6].

To investigate the oscillatory flow, we record the fol-
lowing time variation of the radial velocity at the center
of annular gap during the computational period :

u(t) = u(r., m/2,t) wherer. = (r;+r,)/2 (19)

Since hydrodynamic instability occurs in the vertical sec-
tion of annulus, the point of (r.. 7/2) is chosen. For a
low-Prandtl number fluid. oscillatory multicellular flow
occurs, and we record N(¢) defined as follows:

N(1) = number of points ¢ at which
uro,¢—,1) >0 and u(r,d+.1) <0 (20)

N(t) represents the number of points at which the sign
of the instantaneous radial velocity at the centerline of
annular gap (r.. 0 < ¢ < m) is changed over from plus to
minus, starting from ¢ = 0. For small Pr and Gr, the
streamlines of the multicellular flow are smooth, and N(r)
is equal to the instantaneous number of cells rotating
counter-clockwise direction.

We record u(t) to see the temporal behavior of velocity
field. and N(7) is recorded to measure the complexity of
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the instantaneous spatial structure of oscillatory flow
field.

3. Results and discussion

Computations were performed for various com-
binations of Pr and Gr with D;/L = 12 in the range of
0.001 < Pr < 0.3 and Gr < 5x 10*. We consider half of
an annulus, since the flow is assumed symmetric with
respect to the vertical plane through the center of cylin-
ders. It was found that the stability of the conduction
regime of natural convection in a narrow horizontal
annulus for Pr < 0.2 and Pr= 0.3 has the following
characteristics.

(1) For Pr < 0.2, the instability sets in as steady or
oscillatory flows consisting of multiple like-rotating cells
in the vertical section of annulus.

(2) For Pr = 0.3, the instability sets in as a steady flow
with one counter-rotating cell on the top of annulus.

The location at which the instability of conduction
regime occurs is in accordance with the result of Walton
[26].

The results are presented in two subsections of
[Pr<0.2] and [Pr = 0.3], according to the type of the
instability of conduction regime.

3.1 [Pr<0.2)

In this range of Prandtl number, two kinds of transition
phenomena were observed : (i) For Pr < 0.01, steady one-
cell flow of conduction regime — steady flow with two
like-rotating cells — oscillatory flow with multiple like-
rotating cells; (ii) For 0.02 < Pr < 0.2, steady one-cell
flow of conduction regime — oscillatory flow consisting
of multiple like-rotating cells.

The map of flow regimes on the Pr—Gr plane is plotted
in Fig. 2. The critical Grashof number at which the insta-
bility of conduction regime occurs is increased as Pr is
decreased, and tends to a finite limit as Pr — 0. This study
obtained Gr, = 8900 with Pr = 0.001, which is larger
than the value of Gr. ~ 7932 for a vertical slot with
Pr=07[19]. For Pr = 0.2, the results of Walton [26] give
Gr. ~ 7369 with DL = 12. This study obtained
Gr, = 7300 for Pr = 0.2 (Fig. 2). The value of the present
study is close to that of Walton, but is slightly smaller.
The difference may be caused by the small-gap approxi-
mation made by Walton. His results are accurate for
L/D; — 0, and give Gr. = 7020 for L/D, = 0. The above
results imply that Gr. is decreased as L/D, decreases. For
very small Prandtl number (Pr = 0.001), the region in
which instability of conduction regime first forms is near
¢ = n/2, but is extended upward with increase of Pr. For
all values of Pr < 0.2, however, all the cells rotate in the
same direction. We can conclude that a transition from
steady one-cell (or multiple like-rotating-cell) flow to

oscillatory multicellular flow occurs in the range of
Pr < 0.2. The streamline pattern of the steady two like-
rotating cells for Pr < 0.01 is similar to that in Fig. 4(b):
at the initial stage of instability, the secondary cell formed
in the upper region of annulus is very weak, but we can
see the formation of the cell clearly with the help of the
radial velocity distribution.

The diagram of Fig. 2 was obtained with the (r x ¢)
mesh of (15 x 257). Especially many grid points were used
in the ¢-direction to capture the weak initial instability
occurring near the critical Grashof number. The meshes
of (15 x 129) or (25 x 129) also vielded qualitatively ident-
ical results, although the transitional Grashof numbers
were about 3% higher than those obtained with
(15x257) mesh. The oscillatory convection after the
onset of instability has been investigated with (25 x 129)
mesh : a test of grid-dependency was made with Pr = 0.01
and Gr = 10, and it was observed that the meshes of
(25x129), (15x257), or (25x257) yielded identical
results.

After the onset of oscillatory convection, the spatial
structure of the flow becomes increasingly complex and
the number of like-rotating cells is sequentially increased,
as Gris increased. One representative value of Pr is taken
as Pr=0.01, and the oscillatory behavior of N(z) and
u(r) is presented in Fig. 3 with Gr = 8900, 9000, 10*, and
1.5 x 10% For Pr = 0.01, the convection is steady, up to
Gr = 8800. But oscillatory convection occurs at
Gr = 8900. Figure 3 presents the transient behavior of
N(r) and w(7) after sudden heating of inner cylinder. For
the values of Gr in Fig. 3, the flows are smooth, and N(r)
is equal to the number of cells rotating counter-clockwise
direction. The figure shows that N(¢) experiences an oscil-
latory motion of 1-2-1-2-1-2--3-2-3 when Gr is close to
Gr. (Gr = 8900), but for Gr = 9000 N(r) increases step-
wise, after impulsive heating of cylinder. And afterwards,
successive 4-5, 4-5, 5-6, and 7-8 cellular patterns occur
periodically, for Gr = 8900. 9000, 10*, and 1.5x 10%
respectively. The 4, 5. and 6 cellular patterns of Gr =
8900, 9000 and 10* are similar to those in Fig. 4(d)-(f).
And the 7-8 cellular patterns of Gr = 1.5 x 10* are shown
in Fig. 5. The above shows that the initial instability
formed in the vertical region near ¢ = /2 propagates
along the circumference of annulus, and the number of
like-rotating cells is sequentially increased, as Gr is
increased.

The onset and propagation of instability after impul-
sive heating of cylinder are illustrated in Fig. 4 with
Pr=0.01 and Gr=10°. The initial conditions are
it =0 =0, and the inner cylinder is suddenly heated to
f = 1. After a second, a pseudo-conduction state with a
crescent-shaped cell is established (a). The velocity profile
at this stage is approximated u(r,, 0) cos (¢). As time goes
on, however, hydrodynamic instability occurs near the
vertical portion of annulus (¢ = #/2). and the radial vel-
ocity profile is increasingly skewed (b-f). During the tran-
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Fig. 2. Stability diagram Pr vs Gr. ‘@’ represents a steady flow with two like-rotating cells in the vertical section of annulus.
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Fig. 3. Time evolution of N(r) and u(f) for several Grashof numbers with Pr = 0.01: (a) Gr = 8900; (b) Gr = 9000 (c) Gr = 10*; (d)
Gr = 1.5x 10°. The initial conditions are # = § = 0, and the inner cylinder is suddenly heated to ¢ = 1. For the parameters ol the

present figure, N(7) is equal to the number of cells rotating counter-clockwise direction.
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Fig. 4. A transient development of flow pattern and distribution of radial velocity at the centerline of annul
Gr=10%and Pr=0.01:at (a) r = 0.225: (b) 1 = 0.675: (c) 1 = 0.785 (d) r=0965: (e}t = 1.175 (f)

are it = = 0, and the inner cylinder is suddenly heated to 0 = 1.

sient period, the strongest cell in the vicinity of ¢ = /2
(cell 1) drifts downward, as time goes on. And new cells
which rotate counter-clockwise direction are created
alternately in the upper (¢ < 7/2) and the lower (¢ > n/2)
regions of annulus (b-f). The velocity profiles and stream-
line patterns of Fig. 4 well show the onset and propa-
gation of instability for small Pr.

An example of the periodic motion of the cells is shown
in Fig. 5 with Gr = 1.5x10* and Pr = 0.01. The fluc-
tuation of u(¢) is presented in Fig. 3(d). At = 1,, at which

ar gap, u(r., ¢), with
t = 1.345. The initial conditions

u(7) takes its minimum value, seven cells are visible in
Fig. 5(a). The flow in each cell rotates counter-clockwise.
As time goes on, all the cells drift downward, and a new
cell is created in the space of the top portion of the chain
of cells (Fig. 5(b)). The strength of a cell is increased as
it approaches the vertical portion of annulus (¢ = nj2).
Afterwards, however, the strength slowly diminishes and
by the time they reach the bottom portion of annulus.
the cell has vanished. The motion of cells in Fig. 5is in
accordance with the results of Yoo et al. [I1], but is
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S39))

I

(a) (b)

Gr=15000

(c) (d)

Fig. 5. Instantaneous streamlines over one period of oscillation for Gr = 1.5x 10* and Pr = 0.01: (a) at ¢ = ¢, at which u(f) takes its
minimum value; (b) at 1 = ,+ Pi4d. (¢) at 1 = 1, + P/2: (d) at 1 = 1, + 3P4, Three structures are shaded with dots so that their motion

can be followed.

different from those of Fant et al. [10] in which the oscil-
latory motion is composed of coalescence and separation
of cells in the vicinity of ¢ = n/2. The difference may
be caused by their simplified governing equations which
neglect azimuthal diffusion. The phenomenon of the
drifting of cells along the circumference of cylinder can
be compared with the case of a vertical annulus with
heated inner cylinder, in which multicellular flow pattern
is observed to drift upward [23, 24]. During the oscillation

period, the strongest cell is near the vertical portion of

annulus (¢ = 7/2). and it is different from the case of a

vertical slot in which the strongest cells are in the ends of

the slot [21].

The influence of Pr on the oscillatory behavior is shown
in Fig. 6 with Gr = 10*. The periodic flows are composed
of successive 5-6, 6-7. and 5-6-7 cellular patterns for
Pr<0.02 (a, b), Pr=20.1(c), and Pr = 0.2 (d), respec-
tively. The period of oscillation for Gr = 10* and 2 x 10*
as functions of Pris presented in Fig. 7. The figure shows
that the period is decreased, as Pr or Gr is increased.
The general trend observed is that the oscillatory motion
occurs fast and the spatial structure of flow becomes
complex, as Pr or Gr is increased.

The effect of Pr on the spatial structure of flow is

shown in Fig. 8. The figure presents the instantaneous
streamlines for Pr=0.001, 0.05, 0.1, and 0.2 with
Gr =2x10* For very small Pr, the multiple cells are
distributed uniformly in the lower and upper regions of
annulus (a). As Pr is increased, however, the cells are
shifted upwards (b). At Pr = 0.1 (c), five cells are clearly
visible in the upper region of ¢ < /2, but only two cells
in the lower region of ¢ > n/2. The strength of a cell in
the top portion of the chain of cells becomes strong, as
Pr is increased (c). At Pr=10.2 (d), a new counter-rot-
ating cell is formed on the top of annulus during the
oscillation period. In all cases of Fig. 8, the multicellular
flow pattern is observed to drift downward, and the speed
of travel increases as Pr is increased (Fig. 7).

For Pr = 0.2, the counter-rotating cell on the top of
annulus is also observed at Gr = 10", in which the cell
appears and disappears periodically. At Gr = 2 x 10%,
however, the cell does not disappear during the oscillation
period, and an oscillatory multicellular flow which shows
different behavior from the case of Pr = 0.01 (Fig. 5) is
observed. The temporal behavior of flow patterns for
Pr =0.2and Gr = 2 x 10*is presented in Fig. 9. The main
features of the flow can be described as follows. As the
cell in the top of the chain of like-rotating cells, ‘cell
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Fig. 6. Time evolution of N{7) and u(1) for several Prandt] numbers with Gr = 10*: (a) Pr=0.001:(b) Pr=1002:() Pr=10.1:({d)
Pr = 0.2. The initial conditions are & = # = 0. and the inner cylinder is suddenly heated to 6 = 1.
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Fig. 7. Period of oscillation (P) as function of Prandt! number for Gr = 10* and 2 x 10*,
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Fig. 8. Effect of Prandtl number on convection with Gr = 2x 10*: (a) Pr = 0.001: (b) Pr = 0.05; (¢) Pr = 0.1 (d) Pr = 0.2. For each

value of Pr, the fluctuation of u(r} shows simple periodic motion which is similar to those in Fig. 6, and the plotted is the instantaneous
streamlines at 7 = 7, at which u(r) takes its minimum value.

Pr=0.2

L))
"\\ oy

Gr=2x10%

—
e

Fig. 9. Time sequence of streamfunction field over one period of oscillation for Pr = 0.2 and Gr = 2x 10*: (a) at ¢ = 1, at which u(r)
takes its minimum value: (b) at t = 1, + P/4; (cyat -+ Pjd <1 <1, +3P/8;(d)at r = n+P/2:(e) at 1,+5SP!8 <t < 1,+3P/4: (f) at
/= t,+3P/4. Two structures are shaded with dots so that their motion can be followed.
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1’, drifts downward (a), the space between the counter-
rotating cell and ‘cell 1’ becomes wide, and a new cell,
‘cell 2°, is created in that space, and grows in size (b).
Next, as ‘cell 1’ drifts further downward, the viscous drag
of ‘cell 1” and ‘cell 2’ creates a new counter-rotating cell,
‘cell 3%, between the two cells (c, d). As ‘cell 1" drifts
further downward, however, ‘cell 3° becomes weak, and
finally disappears (e, f). Afterwards, ‘cell 2’ in (f) drifts
downward, and plays the role of ‘cell 1’ in (a). And one
cycle of the periodic motion is completed. During the
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period, the counter-rotating cell on the top of annulus is
contracting and expanding in size.

For relatively small Gr near Gr,, the region occupied
by the multiple cells is narrow, and the cells are slim (Fig.
4). As Gr increases, the number of the like-rotating cells is
increased, and the region occupied by the cells is extended
over the whole annulus at high Gr (Fig. 8). Diagrams of
flow patterns for Pr = 0.01 and 0.1 are presented in Fig.
10, in which N(7) represents the complexity of the spatial
structure of oscillatory multicellular flow. For relatively

15
| Steady 2-like~rotating—cell
i e
] | {
10 ! 11 11
] ! I 10
N(t) ] : ! I °
t) 8
i :I 1357
5 - | 6
| Steady 1° Oscillatory multicellular flow
11-cell F—
i I [Pr=0.01]
o 0 T T T T T T T T éx‘l(‘f‘ I IGI’,‘I 4 L] axll(lfl T T 1 1 | éxl(#
(a)
15
] |
’ |
10- |
b i { I 8+1
1 7+1
N(t)] 1 { 741
- 7 7+ 7+1
5 - IIG 6 ©
1 1S’tedclily:f’ Oscillatory multicellular flow
T 1—ce —
- J—
o1 I [Pr=0.1]
1T 1 T ) T ) LI 1 1 T 1 T I T ¥ T T 1 | 1 T ¥ 1 T T
0 2x10* Cr 4x1¢* 6x10

(b)

Fig. 10. Diagrams of flow patterns for Pr = 0.01 (a) and 0.1 (b). The numbers in the figure represent the number of like-rotating cells
which are clearly visible during the oscillation period. at each Gr. In (b), 7+ 1" (or "8 + 1") represents seven (or eight) like-rotating cells
plus one counter-rotating cell on the top of annulus. And *+@ at Gr = 2 x 10* represents that the counter-rotating cell on the top

appears and disappears periodically.
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small Gr, Gr < 1.5x 10* for Pr = 0.01 and Gr < 10* for
Pr = 0.1, the flow is smooth and N(¢) is equal to the
number of cells rotating counter-clockwise direction. For
Pr=0.01, sequential increase of the number of like-
rotating cells can be seen as Gr is increased, which dem-
onstrates the smooth propagation of the initial instability
set in near ¢ = /2 along the circumference of cylinder.
As Princreases, the influence of thermal instability in the
upper region of annulus becomes strong. For Pr = 0.1, a
counter-rotating cell appears on the top of annulus at
Gr=2x10%

3.2, [Pr=03]

For a fluid with Pr = 0.3, the conduction-dominated
flow is maintained up to Gr = 6000, but the flow becomes
unstable with increase of Gr, and finally a new flow pat-
tern with a counter-rotating cell on the top of annulus is
established at Gr = 7000. The steady-state streamlines at
Gr = 7000 and the distributions of radial velocities at
Gr = 6000 and 7000 are presented in Fig. 11. We can see
that the streamlines and the velocity profile of Gr = 7000
are nearly identical to those of the conduction regime
except the region of 0 < ¢ < 30", The top part of an

annulus with a heated inner cylinder is thermally
unstable. And the above resuits show that the first insta-
bility for Pr = 0.3 is thermal in its origin. It is to be noted
that the value of Ra = 2100, corresponding to Gr = 7000
and Pr = 0.3, is not much larger than the critical Rayleigh
number of Ra. = 1708 in the Rayleigh—Bénard con-
vection [25].

As Gr is increased further, the steady secondary flow
with a counter-rotating cell undergoes an oscillatory
instability at Gr = 8000. The transient mean Nusselt
numbers and time evolutions of wu(f) for Gr = 8000,
1.2x 10% 2 x 10%, and 3 x 10* are presented in Fig. 12. At
the initial stage of oscillatory instability (Gr = 8000), the
unsteady motion is periodic in time and shows fluc-
tuations of constant amplitude. The fluctuation becomes
fast with increase of Gr, and apparently chaotic motions
are developed at Gr = 2 x 10* and 3 x 10%. A few instan-
taneous streamlines and isotherms are presented in Fig.
13. The figure shows multiple like-rotating cells in the
vertical section of annulus and one or more counter-
rotating cells on the top part. It was observed that the
cells separated by the streamline of ¥ = 0 on the top did
not disappear during the oscillation period. The like-
rotating cells in the vertical section undergo strong oscil-

%

0009=49
0004=49

-2 0 2-2 0 2
W, @X10° u(7,¢)x10°

(b) (c)

Fig. 11. Steady-state streamlines and variation of radial velocity at the centerline of annular gap. u(r., ¢). for Pr = 0.3: (a) streamlines
at Gr = 7000 (b) radial velocity at Gr = 6000 ; (¢) radial velocity at Gr = 7000.
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Fig. 12. Transient mean Nusselt number at the inner cylinder and time evolution of u(r) for several Grashof numbers with Pr = 0.3 :

(a) Gr = 8000; (b) Gr = 1.2x 10*: (¢) Gr = 2 x 10*; (d) Gr = 3 = 10*.

latory motions ; nevertheless, the shape and strength of
the cells on the top are nearly unvarying for all time. The
above indicates that the secondary oscillatory instability
after the first instability is hydrodynamic in its nature,
although the first instability of conduction regime at
Gr = 7000 is thermal in its origin.

Figure 13 shows one, two, three, and four square-
shaped cells on the upper part of annulus for Gr = 8000,
1.2x 104 2x 10%, and 3 x 10%, respectively. The general
trend observed is that as Gr is increased, the number of
the cells and the size of the region occupied by the cells
are increased. If we start the computation from zero
initial condition, solutions with one and four cells are
usually obtained for Gr = 10* and 5 x 10°, respectively. It
was observed, however, that the number of the cells were
dependent on the initial condition or time step used in
the computation. For example, when Gr was increased
to 1.2x10* starting from an instantaneous solution
obtained for Gr = 8000 with one cell on the top (Fig.
13a) as the initial condition, a time-periodic flow with
one square-shaped cell on the top was established. The
above implies that multiple oscillatory flows which can
be distinguished by the number of cells in the thermally
unstable region of annulus can occur for Pr = (.3. The
phenomena can be compared with the previous study of

Yoo [6], in which dual steady solutions for air (Pr = 0.7)
were investigated. For Pr = 0.7, steady-state convections
with two type of cells were found [6]. But for Pr = 0.3,
hydrodynamic instability occurring in the vertical section
of annulus makes the system unsteady, and multiple oscil-
latory flows can be developed.

To investigate the above phenomena systematically,
Gr was increased starting from Gr = 6000, and the solu-
tion was found by letting the initial condition be the
instantaneous solution previously obtained (up-scan).
And starting from the instantaneous solution of
Gr = 5x 10* with four cells on the upper part of annulus
as initial condition, the Gr was then sequentially
decreased (down-scan). The results are presented in Fig.
14. In the figure, Ny, on wp Tepresents the number of
square-shaped cells on the upper part of annulus. We can
see transitions from one to three cells at the up-scan stage,
and from four to two cells at the down-scan stage. [t has
also been tried to find hysteresis phenomenon, and the
phenomenon was observed between the solution bran-
ches of Ny onom = 2 and 4 at high Gr. When the number
of cells on the top is odd, the fluid in the central plane of
annulus (¢ = 0) descends (Fig. 13(a), (¢)), and when the
number is even, the fluid ascends (Fig. 13(b), (d)). The
temperature gradient between the inner and outer cyl-
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A

32

Gr=12000

Gr=8000

(c) (d)
Gr=20000 @% Gr=30000

Gr=30000

Fig. 13. Instantaneous streamlines and isotherms for Pr = 0.3: (a) Gr = 8000; (b) Gr = 1.2x 10*: (c) Gr = 2 x 10*: (d) Gr = 3% 10,

inders in the vertical direction is the greatest at ¢ = 0.
The transitions imply that once the thermal plume at the
plane of ¢ = 0 has been established (directed downward
or upward), its direction is not varied by the increase or
decrease of Gr, after the onset of secondary instability
(Gr = 8000). Figure 14 shows that multiple oscillatory
flows characterized by the number of cells in the ther-
mally unstable region of annulus can occur at Gr = 8000.

It is to be noted, however, that only a steady flow with a
counter-rotating cell on the top occurs at the onset of
the first instability of conduction regime at Gr = 7000,
regardless of initial conditions. The flow is periodic in
time for Gr < 1.5 x 10% but is apparently nonperiodic for
Gr 2 2x 10%. The oscillatory motion can be classified in
further detail, such as periodic motion with subharmonic
frequency, quasi-periodic with two or three incom-
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Fig. 14. Diagram showing the solution branches found for Pr = 0.3 : N onwop; TEPresents the number of square-shaped cells separated

by the streamline of ¥ = 0 on the upper part of annulus.

mensurable frequencies, etc. This study has focused the
main attention on the spatial structure of the convective
flows. The route to temporal chaos is also an interesting
subject [29, 30], and that for the natural convection in a
horizontal annulus remains to be studied.

Although multiple steady solutions for several hy-
drodynamic problems (Taylor problem, Dean problem
etc.) have been investigated experimentally and theor-
etically [30-34], the existence of multiple oscillatory flows
has never been reported in any of the numerical and/or
experimental studies as far as the present author is aware.
For a narrow annulus with a heated cylinder, multiple
oscillatory flows can occur, since hydrodynamic and ther-
mal instabilities are coexistent in the fluid with an inter-
mediate value of Pr (Pr = 0.3). That is, the thermal insta-
bility can yield multiple flows and the hydrodynamic
instability can induce oscillatory flows.

An example of dual oscillatory flows is shown in Fig.
15 with Gr = 1.4 x 10* having two or three cells on the
top of annulus. It can be clearly seen that the like-rotating
cells in the vertical section of annulus drift downward as
time goes on, but the two (or three) cells on the top are
almost unvarying. This is due to the stabilizing effect
of viscous force and temperature field in the thermally
unstable region, that is once the thermal plume on the
top has been established, the viscous force maintains the
shape of thermal plume at high Pr. In the case of (11), the
strength of the counter-rotating cell interfaced with the
end of the chain of like-rotating cells is very weak, but
the cell persists for all time. It is different from the case
of relatively low Pr. Pr = 0.2 (Fig. 9), in which the cells

on the top appear and disappear periodically, and the
counter-rotating cell is contracting and expanding in size.

The temporal development of cells after impulsive
heating of cylinder is shown in Fig. 16 with Gr = 2 x 10*.
The initial conditions are i = 6 = 0, and the inner cyl-
inder is suddenly heated to 6 = 1. After a second, a
pseudo-conduction state with a crescent-shaped cell is
established (a). And afterwards instability occurs in the
vertical section of annulus, creating like-rotating cells (b).
As time goes on, the instability propagates upward (c, d),
and the strength of the cell on the top of the chain of cells
becomes strong (€). And finally, the increased strength of
the cell creates a counter-rotating cell on the top of annu-
lus (f, g). As time goes on further, all the cells except the
cell on the top of the chain of cells drift downward, and
a new counter-rotating cell is formed (h), and grows in
size (i, j). The plot of transient Nusselt number shows
that Nu, (1) is increased during the time interval of about
0.15 <1 <045 during which the pseudo-conduction
state having been broken and the cells are created sequen-
tially. After the formation of the three cells on the top
(r > 0.45), however, Nu(r) ceases to increase but fluc-
tuates. We can see that the cellular convection increases
the heat transfer at wall.

As a final observation on the effect of Gr and flow
pattern. their influence on heat transfer is shown in Fig.
17. The figure presents the time-averaged overall Nusselt
number (Em) as functions of Gr. From the figure, we
can see relatively steep increase in the overall Nusselt
number when the number of the square-shaped cells on
the upper part of annulus is increased from one to three
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10

Pr=0.3

(c) (d)  Gr=14000

Fig. 15. Plots of u(r) and time sequence of instantaneous streamlines over one period of oscillation for Pr = 0.3 and Gr = 1.4 x 10*
having flows with two (I) and three (II) cells on the top of annulus : (a) at 1 = ¢, at which (/) takes its minimum value ; (b) at ¢ = ¢, + P4
(c)at ¢ =+ P/2:(d)at r = 1,+3P/4. One structure is shaded with dots so that its motion can be followed.

(or from two to four), at the up-scan stage. And at the
down-scan stage, relatively steep decrease in Ni,. can
be seen when the number of the cells is decreased from
four to two. In the regime of multiple oscillatory flows,
the flow with the more cells on the top of annulus has
the greater overall Nusselt number than the other flows.
Cellular convection forms thermal plumes between the

cells, and the heat transfer at the wall is increased with
increase of the number of cells (or thermal plumes).

4. Conclusions

Natural convection in a narrow horizontal concentric
annulus is numerically investigated. Unsteady two-dimen-
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[ Pr=03 1]
Gr=20000

(i) §)

Fig. 16. Transient mean Nusselt numbers and development of the flow patterns for Pr= 0.3 and Gr = 2x 10*: at (a) 1 =0.1; (b)
t=017; () t=023;(d) r=032:(e) r=0345; () 1 = 0.355; (g} t = 0.36; (h) 1 =0.374; (i) 1 = 0.376: (j) r = 0.45. The initial
conditions are & = § = 0, and the inner cylinder is suddenly heated to 0 = 1.

sional streamfunction—vorticity equation is solved by using
finite difference method. It is found that the stability of
the conduction regime of natural convection for Pr < 0.2
and Pr = 0.3 has the following characteristics: (1) For
Pr £ 0.2, hydrodynamic instability induces steady or oscil-
latory flows consisting of multiple like-rotating cells in
the vertical section of annulus; (2) For Pr = 0.3, thermal
instability creates one counter-rotating cell on the top of
annulus. For Pr ~ 0, the region in which instability of
conduction regime first forms is near ¢ = /2, but is
extended upward with increase of Pr. After the onset of
instability, diverse oscillatory multicellular convections are
developed, according to Pr. For a fluid of Pr = 0, the
multiple cells are distributed uniformly in the lower and
upper regions of annulus. As Pr is increased, however,

the cells are shifted upwards. The like-rotating cells drift
downward, as time goes on. and the speed of travel
increases as Pr is increased. For Pr = 0.3, hydrodynamic
and thermal instabilities are coexistent, and the oscillatory
flows after secondary instability consist of multiple like-
rotating cells in the vertical section of annulus and one or
more counter-rotating cells on the top part. It is observed
that the shape and strength of the square-shaped cells on
the top are almost unvarying, although the like-rotating
cells in the vertical section undergo strong oscillatory
motions. The oscillatory instability is hydrodynamic in
nature. Multiple oscillatory flows characterized by the
number of the cells on the top are found for Pr=0.3.
Time-averaged overall Nusselt number at the wall is
increased with increase of the number of cells on the top.
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Fig. 17. Time-averaged overall Nusselt number (Nt ime) for Pr = 0.3. In the non-periodic regime of Gr, integration is carried out from
t=1gto ¢ = fg+20, and the last part of data for Nu are averaged over the time interval of Ar = 10. Continuous and dashed lines
represent the curves of Nityme at the up-scan and down-scan stages, respectively. The symbols ‘1 — 3" and *2 « 4’ indicate the points
(Gr) at which the number of cells separated by the streamline of ¥ = 0 on the upper part of annulus is increased from one to three at
the up-scan stage, and is decreased from four to two at the down-scan stage, respectively. The symbol *2 — 4’ indicates the point (Gr)
at which the number of cells is increased from two to four, with increase of Gr.
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